Some Unusual Identities for Special Values of the Riemann Zeta Function ∗

نویسنده

  • WILLIAM D. BANKS
چکیده

In this paper, we use elementary methods to derive some new identities for special values of the Riemann zeta function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Identities by Generalized L−summing Method

In this paper, we introduce 3-dimensional L−summing method, which is a rearrangement of the summation P Aabc with 1 ≤ a, b, c ≤ n. Applying this method on some special arrays, we obtain some identities on the Riemann zeta function and digamma function. Also, we give a Maple program for this method to obtain identities with input various arrays and out put identities concerning some elementary f...

متن کامل

Identities for the Riemann Zeta Function

In this paper, we obtain several expansions for ζ(s) involving a sequence of polynomials in s, denoted by αk(s). These polynomials can be regarded as a generalization of Stirling numbers of the first kind and our identities extend some series expansions for the zeta function that are known for integer values of s. The expansions also give a different approach to the analytic continuation of the...

متن کامل

Mahler measure of some n-variable polynomial families

The Mahler measures of some n-variable polynomial families are given in terms of special values of the Riemann zeta function and a Dirichlet L-series, generalizing the results of Lalín (J. Number Theory 103 (2003) 85–108). The technique introduced in this work also motivates certain identities among Bernoulli numbers and symmetric functions. © 2005 Elsevier Inc. All rights reserved.

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001